If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-40x+172=0
a = 2; b = -40; c = +172;
Δ = b2-4ac
Δ = -402-4·2·172
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-4\sqrt{14}}{2*2}=\frac{40-4\sqrt{14}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+4\sqrt{14}}{2*2}=\frac{40+4\sqrt{14}}{4} $
| X+1/18=1/9+x-2/6 | | 5(3x+9)-2x=15x−2(x−5) | | -(12x4)=0 | | 20x+14=8x-76 | | 43 x−4=40−2x | | -2 | | -3=7x+4 | | -18+-18n=-16+20 | | -9t=-5-9t | | (1-x)2+x+3+9=67 | | 17=v/9 | | -7g-9=-8g | | 6x+5x-3=19 | | 4w-2=2(2w+1) | | 4(v+8)-6v=34 | | 8v-4=52 | | 6c-5=6c | | –7j−–16j−–j=20 | | 4=-2n | | 2(3x+7)=11x+4-5x+10 | | x−13=−23 | | 5p–4=-44 | | 13=n+-13 | | b/36=5/9= | | -3s-15=-4s+17-13 | | n+17=3 | | 5x−(x+3)=1/3(9x+18)-5 | | 3=−2|1/4s−5|+3. | | x+33=49 | | 14-4n=-2(-8+2n) | | 3x-7=143 | | 3x+8-x-10=14 |